Энергия необходимая для жизнедеятельности растений освобождается. Основные процессы жизнедеятельности. Начальный период тренировки

Основные процессы жизнедеятельности клетки

Энергия необходимая для жизнедеятельности растений освобождается. Основные процессы жизнедеятельности. Начальный период тренировки

Клетка — элементарная единица всех организмов. От ее состояния зависит степень активности, способность приспосабливаться к условиям среды. Процессы жизнедеятельности клетки подчинены определенным закономерностям. Степень активности протекания каждого из них зависит от фазы жизненного цикла.

Всего их выделяют две: интерфаза и деление (фаза М). Первая занимает время между образованием клетки и ее гибелью или делением. В период интерфазы активно протекают практически все основные процессы жизнедеятельности клетки: питание, дыхание, рост, раздражимость, движение.

Размножение клетки осуществляется только на фазе М.

Периоды интерфазы

Время клеточного роста между делениями разделяется на несколько этапов:

  • пресинтетический, или фаза G-1, — начальный период: синтез матричной РНК, белков и некоторых прочих клеточных элементов;
  • синтетический, или фаза S: удвоение ДНК;
  • постсинтетический, или фаза G-2: подготовка к митозу.

Кроме того, некоторые клетки после дифференциации перестают делиться. В их интерфазе отсутствует период G-1. Они находятся в так называемой фазе покоя (G-0).

Обмен веществ

Как уже было сказано, процессы жизнедеятельности живой клетки по большей части протекают в период интерфазы. Основным из них считается обмен веществ. Благодаря ему протекают не только различные внутренние реакции, но и межклеточные процессы, связывающие отдельные структуры в целый организм.

Обмену веществ присуща определенная схема. Процессы жизнедеятельности клетки во многом зависят от ее соблюдения, отсутствия каких бы то ни было нарушений в ней. Вещества, прежде чем повлиять на внутриклеточную среду, должны проникнуть сквозь мембрану.

Затем они подвергаются определенной переработке в процессе питания или дыхания. На следующем этапе образовавшиеся продукты переработки используются для синтеза новых элементов или преобразования имеющихся структур.

Оставшиеся после всех преобразований продукты обмена, которые вредны для клетки или просто не нужны ей, удаляются во внешнюю среду.

Ассимиляция и диссимиляция

Регуляцией последовательной смены преобразований одних веществ в другие занимаются ферменты. Они способствуют более быстрому протеканию определенных процессов, то есть выступают в качестве катализаторов.

Каждый такой «ускоритель» влияет лишь на конкретное преобразование, направляя течение процесса в одну сторону.

Вновь образованные вещества далее подвергаются воздействию других ферментов, способствующих дальнейшему их превращению.

При этом все процессы жизнедеятельности клетки так или иначе связаны с двумя противоположными тенденциями: ассимиляцией и диссимиляцией. Для обмена веществ их взаимодействие, баланс или некоторое противостояние являются основой.

Разнообразные вещества, поступившие извне, преобразуются под действием ферментов в привычные и необходимые для клетки. Эти синтетические преобразования и называются ассимиляцией. При этом для подобных реакций необходима энергия.

Ее источником являются процессы диссимиляции, или разрушения. Распад вещества сопровождается выделением энергии, необходимой для того, чтобы могли протекать основные процессы жизнедеятельности клетки.

Диссимиляция также способствует образованию более простых веществ, которые затем используются для нового синтеза. Часть продуктов распада при этом выводится.

Процессы жизнедеятельности клетки связаны часто с балансом синтеза и распада. Так, рост возможен только при преобладании ассимиляции над диссимиляцией. Интересно, что бесконечно расти клетка не может: в ней заложены определенные границы, по достижении которых рост останавливается.

Проникновение

Транспортировка веществ из окружающей среды в клетку осуществляется пассивно и активно. В первом случае перенос становится возможен благодаря диффузии и осмосу.

Активная транспортировка сопровождается затратой энергии и часто происходит вопреки указанным процессам. Таким образом, например, проникают ионы калия.

Они нагнетаются в клетку, даже если их концентрация в цитоплазме превышает ее уровень во внешней среде.

Характеристики веществ влияют на степень проницаемости для них клеточной мембраны. Так, органические вещества попадают в цитоплазму легче, чем неорганические. Для проницаемости имеет значение и размер молекул. Также свойства мембраны зависят от физиологического состояния клетки и таких особенностей окружающей среды, как температура и освещенность.

Питание

В поступлении веществ из окружающей среды принимают участие довольно хорошо изученные процессы жизнедеятельности: дыхание клетки и ее питание. Последнее осуществляется с помощью пиноцитоза и фагоцитоза.

Механизм обоих процессов схож, но во время пиноцитоза захватываются менее крупные и плотные частицы. Молекулы поглощаемого вещества адсорбируются мембраной, захватываются специальными выростами и погружаются вместе с ними внутрь клетки.

В результате образуется канал, а затем возникают пузырьки из мембраны, содержащие пищевые частички. Постепенно они освобождаются от оболочки. Далее частички подвергаются воздействию очень близких к пищеварению процессов.

После ряда преобразований вещества расщепляются на более простые и используются для синтеза элементов, необходимых клетке. При этом часть образовавшихся веществ выводится в окружающую среду, поскольку не подлежит дальнейшей переработке или использованию.

Дыхание

Питание – не единственный процесс, способствующий появлению в клетке необходимых элементов. Дыхание по своей сути с ним очень схоже.

Оно представляет собой ряд последовательных преобразований углеводов, липидов и аминокислот, в результате которых возникают новые вещества: углекислый газ и вода.

Важнейшая часть процесса заключается в образовании энергии, которая запасается клеткой в виде АТФ и некоторых других соединений.

С участием кислорода

Процессы жизнедеятельности клетки человека, как и многих других организмов, немыслимы без аэробного дыхания. Главным веществом, необходимым для него, является кислород. Освобождение столь необходимой энергии, а также образование новых веществ происходит в результате окисления.

Процесс дыхания делится на две стадии:

  • гликолиз;
  • кислородный этап.

Гликолиз — это расщепление глюкозы в цитоплазме клетки под действием ферментов без участия кислорода. Он представляет собой одиннадцать последовательно сменяющих друг друга реакций. В результате из одной молекулы глюкозы образуются две молекулы АТФ.

Продукты распада при этом попадают в митохондрии, где начинается кислородный этап. В результате еще нескольких реакций образуются углекислый газ, дополнительные молекулы АТФ и атомы водорода. В целом клетка получает из одной молекулы глюкозы 38 молекул АТФ.

Именно из-за большого количества запасаемой энергии аэробное дыхание и считается более эффективным.

Анаэробное дыхание

Для бактерий свойственен другой тип дыхания. Они вместо кислорода используют сульфаты, нитраты и прочее. Такой тип дыхания менее эффективен, однако он играет огромную роль в круговороте веществ в природе.

Благодаря анаэробным организмам осуществляется биогеохимический цикл серы, азота и натрия. В целом процессы протекают аналогично кислородному дыханию.

После окончания гликолиза образовавшиеся вещества вступают в реакцию брожения, результатом которого может стать этиловый спирт или молочная кислота.

Раздражимость

Клетка постоянно взаимодействует с окружающей средой. Ответ на влияние различных внешних факторов называется раздражимостью. Она выражается в переходе клетки в возбудимое состояние и возникновении реакции. Тип ответа на внешнее воздействие отличается в зависимости от функциональных особенностей.

Мышечные клетки отвечают сокращением, клетки желез — выделением секрета, а нейроны — генерацией нервного импульса. Именно раздражимость лежит в основе многих физиологических процессов.

Благодаря ей, например, осуществляется нервная регуляция: нейроны способны передавать возбуждение не только аналогичным клеткам, но и элементам других тканей.

Деление

Таким образом, существует определенная циклическая схема. Процессы жизнедеятельности клетки в ней повторяются во время всего периода интерфазы и завершаются либо гибелью клетки, либо ее делением. Самовоспроизведение является залогом сохранения жизни в целом после исчезновения конкретного организма.

Во время роста клетки ассимиляция превышает диссимиляцию, объем растет быстрее, чем поверхность. В результате процессы жизнедеятельности клетки затормаживаются, начинаются глубокие преобразования, по завершении которых существование клетки становится невозможным, она переходит к делению.

По окончании процесса формируются новые клетки с увеличенным потенциалом и обменом веществ.

Нельзя сказать, какие процессы жизнедеятельности клетки играют самую важную роль. Все они взаимосвязаны и бессмысленны в отрыве друг от друга. Тонкий и отлаженный механизм работы, существующей в клетке, очередной раз напоминает о мудрости и грандиозности природы.

Источник: https://FB.ru/article/175366/osnovnyie-protsessyi-jiznedeyatelnosti-kletki

Процессы жизнедеятельности растений

Энергия необходимая для жизнедеятельности растений освобождается. Основные процессы жизнедеятельности. Начальный период тренировки

Минеральное (почвенное) питание.

Растения как живые организмы успешно растут и развиваются, если имеют все необходимые условия для жизни: свет, воду, воздух, пищу.

С помощью корней растение извлекает из почвы необходимые ему минеральные вещества – так осуществляется минеральное (почвенное) питание растений. В этом процессе особо важную роль играют корневые волоски в зоне всасывания. Вот почему почвенное питание ещё называют корневым питанием. Корневое питание обеспечивает поступление в растение воды и минеральных солей.

Из почвы через корни в растения поступают вода и растворенные в ней минеральные соли, т. е. происходит минеральное питание.

Водоросли, а также некоторые водные растения усваивают питательные вещества всей поверхностью тела. Высшие растения поглощают их из почвы через корни. Вода и минеральные соли поступают в растение через корневые волоски.

Слово «фотосинтез» означает буквально создание или сборку чего-то под действием света. Обычно, говоря о фотосинтезе, имеют в виду процесс, посредством которого растения на солнечном свету синтезируют органические соединения из неорганического сырья.

Все формы жизни во Вселенной нуждаются в энергии для роста и поддержания жизни. Водоросли, высшие растения и некоторые типы бактерий улавливают непосредственно энергию солнечного излучения и используют ее для синтеза основных пищевых веществ.

Животные не умеют использовать солнечный свет непосредственно в качестве источника энергии, они получают энергию, поедая растения или других животных, питающихся растениями.

Итак, в конечном счете, источником энергии для всех метаболических процессов на нашей планете, служит Солнце, а процесс фотосинтеза необходим для поддержания всех форм жизни на Земле.

Фотосинтез протекает в хлоропластах. В ходе этого процесса за счет энергии солнечного света растение с помощью зеленого хлорофилла листьев образует необходимые ему органические вещества из неорганических – углекислого газа и воды.

Так основным поставщиком углекислого газа для фотосинтеза является воздух, то этот способ получения растением органических веществ называют воздушным питанием.

Фотосинтез всегда поддерживается корневым питанием – поглощением из почвы воды и минеральных солей. Без воды фотосинтез не происходит.

Зеленый лист – специализированный орган воздушного питания. Благодаря плоской форме листовой пластинки лист имеет большую поверхность соприкосновения с воздушной средой и солнечным светом. Присутствие же в мякоти листа многочисленных хлоропластов с хлорофиллом создает огромную фотосинтезирующую поверхность, превращая таким образом лист в могучую фабрику образования органических веществ.

Растения, как и все живые организмы, постоянно дышат. Для этого им необходим кислород. Он нужен и одноклеточным, и многоклеточным растениям. Кислород необходим для процессов жизнедеятельности клеток, тканей и органов растения.

Дыхание — процесс универсальный. Оно является неотъемлемым свойством всех организмов, населяющих нашу планету, и присуще любому органу, любой ткани, каждой клетке, которые дышат на протяжении всей своей жизнедеятельности. Дыхание всегда связано с жизнью, тогда как прекращение дыхания — с гибелью живого.

Большая часть растений поглощает кислород из воздуха сквозь устьица и чечевицы. Водные растения получают его из водной среды всем телом. Определенные виды растений, которые растут в топких местах, обладают особыми дыхательными корнями, получающие кислород из воздуха.Сравнительная характеристика процессов дыхания и фотосинтеза.

Дыхание – это процесс, противоположный фотосинтезу. Процесс дыхания тесно связан с постоянным поглощением кислорода, как днем, так и ночью. Особо интенсивно идет процесс дыхания в молодых органах и тканях растения. Частота дыхания предопределена необходимостью роста и развития растений.

Большая часть кислорода приходится на зоны деления и развитие клеток. После окончания роста, с пожелтением листьев и, особенно в зимний период, частота дыхания значительно снижается, но ни в коем случае не прекращается. Дыхание является непременным условием жизни и развития растений.

№ п/пФотосинтезДыхание
1Поглощение углекислого газа.Поглощение кислорода.
2Выделение кислорода.Выделение углекислого газа.
3 Образование сложных органических веществ (преимущественно сахаров) из простых неорганических.Разложение сложных органических веществ (преимущественно сахаров) на простые неорганические.
4Поглощение из окружающей среды и расходование воды.Образование и выделение в окружающую среду воды.
5Поглощение с помощью хлорофилла солнечной энергии и накопление её в органических веществах.Высвобождение энергии.
6Происходит только на свету.Происходит непрерывно на свету и в темноте.
7Протекает в хлоропластах.Протекает в цитоплазме и специальных тельцах клетки.
8Происходит только в зеленых частях растения, преимущественно в листе.Происходит в клетках всех органов растения (зеленых и незеленых).

Page 3

Как и все живые организмы, растения размножаются. Существует три способа размножения растений — вегетативный, бесполый и половой. При вегетативном способе новая особь образуется из части вегетативных органов растений, т. е. листа, стебля или корня.

Иногда новая особь возникает даже из отдельной клетки того или иного вегетативного органа растения. При бесполом размножении у растений образуются особые клетки(споры), из которых вырастают новые самостоятельно живущие особи, сходные с материнской.

Этот способ размножения свойствен некоторым водорослям и гриба. Половое размножение принципиально отличается от вегетативного и бесполого.

Половой процесс в растительном мире крайне разнообразен и часто очень сложен, но по существу сводится к слиянию двух половых клеток — гамет, мужской и женской.

Гаметы возникают в определенных клетках или органах растений. В некоторых случаях гаметы одинаковы по размерам и форме, обе имеют жгутики и потому подвижны.

Процесс слияния гамет называется оплодотворением. Гаметы имеют в своем ядре по одному набору хромосом, а в образовавшейся после слияния гамет клетке, которая называется зиготой, число хромосом удваивается.

Зигота прорастает и дает начало новой особи..

Page 4

Перейти к загрузке файла
Рост и развитие — неотъемлемые свойства любого живого организма. Это интегральные процессы. Растительный организм поглощает воду и питательные вещества, аккумулирует энергию, в нем происходят многочисленные реакции обмена веществ, в результате чего он растет и развивается. Процессы роста и развития тесно взаимосвязаны, так как обычно организм и растет, и развивается. Критерием темпов развития служит переход растений к воспроизведению, к репродукции. Для цветковых растений это закладка цветочных почек, цветение. Критерии темпов роста обычно определяют скоростью нарастания массы, объема, размеров растения.Рост и развитие растений тесно взаимосвязаны. Кроме того, протекание роста и развития зависит от условий окружающей среды.

  • 1. Ushit.NET
  • 2. www.topauthor.ru
  • 3. Fizrast.ru
  • 4. www.zoodrug.ru
  • 5. www.diplomservis.com
  • 6. Материал учебника.

  Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter

Источник: https://studwood.ru/1930569/meditsina/protsessy_zhiznedeyatelnosti_rasteniy

Энергия в организме – Физкульт Привет

Энергия необходимая для жизнедеятельности растений освобождается. Основные процессы жизнедеятельности. Начальный период тренировки

Источник: Олимпийский центр спортивного питания

Энергия не может возникнуть ниоткуда или исчезнуть в никуда, она может только превращаться из одного вида в другой.

Вся энергия на Земле берется от Солнца. Растения способны превращать солнечную энергию в химическую (фотосинтез).

Люди не могут напрямую использовать энергию Солнца, однако мы можем получать энергию из растений. Мы едим либо сами растения, либо мясо животных, которые ели растения. Человек получает всю энергию из еды и питья.

Пищевые источники энергии

Всю необходимую для жизнедеятельности энергию человек получает вместе с пищей. Единицей измерения энергии является калория. Одна калория – это количество тепла, необходимое для нагрева 1 кг воды на 1°С. Большую часть энергии мы получаем из следующих питательных веществ:

– Углеводы – 4ккал (17кДж) на 1г

– Белки (протеин) – 4ккал (17кДж) на 1г

– Жиры – 9ккал (37кДж) на 1г

Углеводы (сахара и крахмал) являются важнейшим источником энергии, больше всего их содержится в хлебе, рисе и макаронах. Хорошими источниками протеина служат мясо, рыба и яйца. Сливочное и растительное масло, а также маргарин почти полностью состоят из жирных кислот. Волокнистая пища, а также алкоголь также дают организму энергию, но уровень их потребления сильно отличается у разных людей.

Витамины и минералы сами по себе не дают организму энергию, однако, они принимают участие в важнейших процессах энергообмена в организме.

Энергетическая ценность различных пищевых продуктов сильно отличается. Здоровые люди достигают сбалансированности своей диеты потреблением самой разнообразной пищи. Очевидно, что, чем более активный образ жизни ведет человек, тем больше он нуждается в пище, или тем более энергоемкой она должна быть.

Самым важным источником энергии для человека являются углеводы. Сбалансированная диета обеспечивает организм разными видами углеводов, но большая часть энергии должна поступать из крахмала.

В последние годы немало внимания уделялось изучению связи между компонентами питания людей и различными болезнями.

Исследователи сходятся во мнении, что людям необходимо уменьшать потребление жирной пищи в пользу углеводов.

Каким образом мы получаем энергию из пищи?

После того, как пища проглатывается, она некоторое время находится в желудке. Там под воздействием пищеварительных соков начинается ее переваривание.

Этот процесс продолжается в тонком кишечнике, в результате компоненты пищи распадаются на более мелкие единицы, и становится возможной их абсорбция через стенки кишечника в кровь.

После этого организм может использовать питательные вещества на производство энергии, которая вырабатывается и хранится в виде аденозин трифосфат (АТФ).

Молекула АТФ из аденозина и трех фосфатных групп, соединенных в ряд. Запасы энергии «сосредоточены» в химических связях между фосфатными группами. Чтобы высвободить эту потенциальную энергию одна фосфатная группа должна отсоединиться, т.е. АТФ распадается до АДФ (аденозин дифосфат) с выделением энергии.

Аденозинтрифосфат (сокр. АТФ, англ. АТР) — нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах. АТФ является основным переносчиком энергии в клетке.

В каждой клетке содержится очень ограниченное количество АТФ, которое обычно расходуется за считанные секунды. Для восстановления АДФ до АТФ требуется энергия, которая и получается в процессе окисления углеводов, протеина и жирных кислот в клетках.

Запасы энергии в организме

После того, как питательные вещества абсорбируются в организме, некоторая их часть откладывается в запас как резервное топливо в виде гликогена или жира.

Гликоген также относится к классу углеводов. Запасы его в организме ограничены и хранятся в печени и мышечной ткани. Во время физических нагрузок гликоген распадается до глюкозы, и вместе с жиром и глюкозой, циркулирующей в крови, обеспечивает энергией работающие мышцы. Пропорции расходуемых питательных веществ зависят от типа и продолжительности физических упражнений.

Гликоген состоит из молекул глюкозы, соединенных в длинные цепочки. Если запасы гликогена в организме в норме, то избыточные углеводы, поступающие в организм, будут превращаться с жир.

Обычно протеин и аминокислоты не используются в организме как источники энергии.

Однако при дефиците питательных веществ на фоне повышенных энергозатрат аминокислоты, содержащиеся в мышечной ткани, могут также расходоваться на энергию.

Протеин, поступающий с пищей, может служить источником энергии и превращаться в жир в том случае, если потребности в нем, как в строительном материале, полностью удовлетворены.

Начало тренировки

В самом начале тренировки, или когда энергозатраты резко возрастают (спринт), потребность в энергии больше, чем уровень, с которым происходит синтез АТФ с помощью окисления углеводов.

Вначале углеводы «сжигаются» анаэробно (без участия кислорода), это процесс сопровождается выделением молочной кислоты (лактата).

В результате освобождается некоторое количество АТФ – меньше, чем при аэробной реакции (с участием кислорода), но быстрее.

Другим «быстрым» источником энергии, идущим на синтез АТФ, является креатин фосфат. Небольшие количества этого вещества содержатся в мышечной ткани.

При распаде креатин фосфата освобождается энергия, необходимая для восстановления АДФ до АТФ. Этот процесс протекает очень быстро, и запасов креатин фосфата в организме хватает лишь на 10-15 секунд «взрывной» работы, т.е.

креатин фосфат является своеобразным буфером, покрывающим краткосрочный дефицит АТФ.

Начальный период тренировки

В это время в организме начинает работать аэробный метаболизм углеводов, прекращается использование креатин фосфата и образование лактата (молочной кислоты). Запасы жирных кислот мобилизуются и становятся доступными как источник энергии для работающих мышц, при этом повышается уровень восстановления АДФ до АТФ за счет окисления жиров.

Основной период тренировки

Между пятой и пятнадцатой минутой после начала тренировки в организме повышенная потребность в АТФ стабилизируется. В течение продолжительной, относительно ровной по интенсивности тренировки синтез АТФ поддерживается за счет окисления углеводов (гликогена и глюкозы) и жирных кислот. Запасы креатин фосфата в это время постепенно восстанавливаются.

Креатин является аминокислотой , которая синтезируется в печени из аргинина и глицина. Именно креатин позволяет спортсменам выдерживать высочайшие нагрузки с большей легкостью.

Благодаря его действию в мышцах человека задерживается выделение молочной кислоты, которая и вызывает многочисленные мышечные боли.

С другой стороны креатин позволяет производить сильные физические нагрузки благодаря высвобождению большого количества энергии в организме.

При возрастании нагрузки (например, при беге в гору) расход АТФ увеличивается, причем, если это возрастание значительное, организм вновь переходит на анаэробное окисление углеводов с образованием лактата и использование креатин фосфата. Если организм не успевает восстанавливать уровень АТФ, может быстро наступить состояние усталости.

Какие источники энергии используются в процессе тренировки?

Углеводы являются самым важным и самым дефицитным источником энергии для работающих мышц. Они необходимы при любом виде физической активности. В организме человека углеводы хранятся в небольших количествах в виде гликогена в печени и в мышцах.

Во время тренировки гликоген расходуется, и вместе с жирными кислотами и глюкозой, циркулирующей в крови, используется как источник мышечной энергии. Соотношение различных используемых источников энергии зависит от типа и продолжительности упражнений.

Несмотря на то, что в жире больше энергии, его утилизация происходит медленнее, и синтез АТФ через окисление жирных кислот поддерживается использованием углеводов и креатин фосфата. Когда запасы углеводов истощаются, организм становится не в состоянии переносить высокие нагрузки. Таким образом, углеводы являются источником энергии, лимитирующим уровень нагрузки во время тренировки.

Факторы, ограничивающие энергозапасы организма во время тренировки

1. Источники энергии, используемые при различных типах физической активности

– слабая интенсивность (бег трусцой)

Требуемый уровень восстановления АТФ из АДФ относительно низок, и достигается окислением жиров, глюкозы и гликогена. Когда запасы гликогена исчерпаны, возрастает роль жиров как источника энергии. Поскольку жирные кислоты окисляются довольно медленно, чтобы восполнять расходуемую энергию, возможность долго продолжать подобную тренировку зависит от количества гликогена в организме.

– средняя интенсивность (быстрый бег)

Когда физическая активность достигает максимального для продолжения процессов аэробного окисления уровня, возникает потребность быстрого восстановления запасов АТФ. Углеводы становятся основным топливом для организма. Однако только окислением углеводов требуемый уровень АТФ поддерживаться не может, поэтому параллельно происходит окисление жиров и образование лактата.

– максимальная интенсивность (спринт)

Синтез АТФ поддерживается, в основном, использованием креатин фосфата и образование лактата, поскольку метаболизм окисления углеводов и жиров не может поддерживаться с такой большой скоростью.

2. Продолжительность тренировки

Тип источника энергии зависит от продолжительности тренировки. Сначала происходит выброс энергии за счет использования креатин фосфата.

Затем организм переходит на преимущественное использование гликогена, что обеспечивает энергией приблизительно на 50-60% синтез АТФ. Остальную часть энергии на синтез АТФ организм получает за счет окисления свободных жирных кислот и глюкозы.

Когда запасы гликогена истощаются, основным источником энергии становятся жиры, в то же время из углеводов начинает больше использоваться глюкоза.

3. Тип тренировки

В тех видах спорта, где периоды относительно низких нагрузок сменяются резкими повышениями активности (футбол, хоккей, баскетбол), происходит чередование использования креатин фосфата (во время пиков нагрузки) и гликогена как основных источников энергии для синтеза АТФ. В течение «спокойной» фазы в организме восстанавливаются запасы креатин фосфата.

4. Тренированность организма

Чем тренированнее человек, тем выше способность организма к окислительному метаболизму (меньше гликогена превращается в лактозу) и тем экономичнее расходуются запасы энергии. То есть, тренированный человек выполняет какое-либо упражнение с меньшим расходом энергии, чем нетренированный.

5. Диета

Чем выше уровень гликогена в организме перед началом тренировки, тем позднее настанет утомление. Чтобы повысить запасы гликогена, необходимо увеличить потребление пищи, богатой углеводами. Специалисты в области спортивного питания рекомендуют придерживаться таких диет, в которых до 70% энергетической ценности составляли бы углеводы.

Рекомендуемая спортсменам пища, богатая углеводами:

– рис

– паста (макаронные изделия)

– хлеб

– зерновые злаки

– корнеплоды

Пища углеводов(г)

Банка бобов 45

Большая порция риса 60

Большая порция картофеля в мундире 45

Два куска белого хлеба 30

Большая порция спагетти 90

500 мл молока 30

Банан 20

Яблоко 10

Наши рекомендации

Следующие рекомендации помогут Вам оптимизировать диету и улучшить самочувствие:

– введите в свой план питания больше углеводов, чтобы поддерживать энергетические запасы организма;

– за 1-4 часа до тренировки съедайте 75-100 г углеводов;

– в течение первого получаса тренировки, когда способность мышц к восстановлению максимальна, съешьте 50-100 углеводов;

– после тренировки необходимо продолжать потребление углеводов для скорейшего восстановления запасов гликогена.

Дерябин Петр

Источник: https://www.fizcultprivet.ru/znanie/22585.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.